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In mammals, the genic disequilibrium 
between males (XY) and females (XX) 

is resolved through the inactivation of 
one of the X-chromosomes in females. 
X-chromosome inactivation (XCI) takes 
place in all mammalian species, but 
has mainly been studied in the mouse 
model where it was shown to be con-
trolled by the interplay of several long 
non-coding RNA (lncRNA). However, 
recent data point toward the existence 
of species divergences among mam-
mals in the strategies used to achieve 
XCI. The recent discovery of XACT, 
a novel lncRNA that coats the active 
X-chromosome specifically in human 
pluripotent cells, further highlights the 
existence of human-specific mechanisms 
of X-chromosome regulation. Here, we 
discuss the roles of lncRNAs in defining 
species-specific mechanisms controlling 
X-inactivation and explore the potential 
role of large lncRNAs in gene activation.

X-chromosome inactivation (XCI) is 
established in the early stages of embry-
onic development. It switches in the 
mouse from an imprinted form, which 
characterizes pre-implantation develop-
ment and extra-embryonic annexes, to a 
random process in the embryo proper after 
its implantation.1 It was demonstrated in 
the mouse that the long non-coding RNA 
Xist is the master regulator of the process, 
as its expression triggers the initiation and 
spreading of X-chromosome silencing 
and the recruitment of repressive histone 
marks.2 Mouse female embryonic stem 
cells are a useful tool to study XCI as they 
recapitulate ex vivo the X-inactivation pro-
cess: displaying two active X chromosomes 
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(Xa) in the pluripotent state, they undergo 
random XCI as they differentiate; Xist 
starts to be expressed at the onset of dif-
ferentiation from the future inactive X 
chromosome. In humans, it has been pos-
sible to get insights into the early stages 
of XCI through a limited number of 
studies of human embryos, as well as the 
analysis of human embryonic stem (hES) 
cells. hES cells have been shown to be a 
more complex model system regarding 
XCI than their murine counterpart. Most 
undifferentiated hES cells have already 
undergone XCI and one X-chromosome 
has been inactivated; however, these cells 
tend to lose the expression of XIST.3 hES 
cells, and their heterogeneity regarding 
XCI, constitute a spontaneously perturbed 
system to understand the early steps of 
X-chromosome repression.

LncRNAs in X-Chromosome  
Regulation: Is it Sequence  
or Function Conservation  

that Matters?

Xist, as well as the surrounding genomic 
region known as the X-inactivation cen-
ter (Xic), is generally conserved in euthe-
rians, and in particular between mouse 
and human. This region harbors several 
genes producing lncRNAs known or sus-
pected to participate in the regulation of 
XCI (Fig. 1), and whose function has been 
mostly studied in the mouse. The extent 
to which these lncRNAs act similarly in 
other species remains to be thoroughly 
investigated. For instance, Xist, which is 
the most characterized of all, is commonly 
thought to control XCI in humans as it 
does in the mouse, but this has not been 
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Identification of XACT, a Large 
lncRNA Coating the Human Xa

We recently discovered a novel long non-
coding RNA, XACT, which displays 
the striking property of forming a cloud 
around active X-chromosome(s) (Xa) in 
human cells.14 XACT is only the second 
example (after XIST ) of a lncRNA coat-
ing a chromosome, and the first to coat an 
active one. XACT is expressed from a region 
of the human X-chromosome located some 
40 Mb (megabases) from the XIC (Fig. 1). 
XACT expression and coating of the Xa is 
restricted to pluripotent and early differ-
entiating cells, when XCI is still extremely 
dynamic. XACT repression appears to 
correlate with the establishment of stable, 
irreversible XCI. Whether XACT is strictly 
involved in XCI remains to be investigated. 
However, its expression pattern leads us to 
speculate that XACT might be involved in 
the regulation of the activity of the Xa dur-
ing early human embryogenesis, potentially 
by protecting it from inactivation in the 
early steps of XCI. No XACT-like transcript 
could be identified from the syntenic region 
in the mouse. Although one cannot exclude 
the possibility that another lncRNA tran-
scribed from a different mouse genomic 
location might share XACT features, our 
findings strongly suggest that XACT could 
participate in human-specific mechanisms 
for controlling X-chromosome activity.

antisense transcript that could assume 
Tsix-like function in humans remains 
formally possible, the differences in the 
dynamics of XIST expression during early 
development in mouse and human raises 
the question as to the necessity for con-
serving such a function. Finally, Linx is a 
recently identified lncRNAs that is sus-
pected to participate in the control of Tsix 
expression.12 Its conservation in humans 
is not yet documented, but the lack of 
Tsix-like function in humans would argue 
against Linx conservation.

The comparison of human and mouse 
XCI therefore reveals a high variability 
in the involvement of lncRNAs. Analysis 
of more distantly related species further 
uncovered the intriguing finding that 
non-homologous lncRNAs could harbor 
similar function in XCI; in marsupi-
als, where Xist is not conserved, another 
lncRNA, Rsx, has indeed been shown 
to have Xist-like properties.13 Rsx coats 
the inactive X-chromosome, and can 
induce some degree of gene silencing 
when inserted on an autosome in mouse 
ES cells. It appears altogether that the 
regulation of X-chromosome activity in 
mammals relies on a plastic interplay of 
rapid-evolving lncRNAs. It is therefore 
tempting to speculate that additional non-
coding actors, yet to be discovered, might 
come into play and define species-specific 
mechanisms.

formally proven; in fact, several differences 
in Xist expression profiles between human 
and mouse have recently been reported. 
XIST expression is highly variable in hES 
cells, in contrast to the mouse, where Xist 
upregulation is tightly associated with 
ES cell differentiation.4 More strikingly, 
observations in human pre-implantation 
embryos, where X-chromosomes are 
active yet coated by XIST, further support 
some degree of uncoupling between XIST 
expression and X-chromosome repression 
in human.5

Among the other lncRNAs within the 
Xic, Jpx, and Ftx stand as potential acti-
vators of the X-inactivation process.6,7 
They have well-defined human orthologs, 
whose functions have not yet been investi-
gated. In contrast, Tsix conservation is the 
subject of some debate. Tsix in the mouse 
is antisense to Xist and inhibits the accu-
mulation of Xist transcripts on the future 
active X, protecting it from inactivation.8 
Tsix is also believed to be involved in the 
transition from imprinted to random 
X-inactivation,9 an event that does not exist 
in the human. A XIST antisense transcript 
has been identified in humans, but it bears 
very little similarity to the mouse Tsix and 
its properties argue against a role in XIST 
repression.10 In particular, TSIX and XIST 
can be concomitantly expressed from the 
same X-chromosome in human cells.11 
Although the hypothesis of an alternative 

Figure 1. Comparative maps of the human and mouse X-chromosomes, including the X-inactivation center region (upper part), and the XACT region 
(lower part), according to the RefSeq annotation. Note that in the mouse, no transcript similar to XACT could be detected in the syntenic region. 
Protein-coding genes are indicated in black, genes producing lncRNAs in green.
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crucial to gain insight into its function 
and potential mode of action.

Lessons from mammals and flies are 
teaching us how central lncRNAs are to 
dosage-compensation processes, no mat-
ter the underlying mechanisms. Their 
RNA nature and the weak evolutionary 
constraints exerted on them could allow 
them to evolve more rapidly than pro-
tein-coding genes and to adapt to species 
specificities. X-chromosome inactivation 
in mammals in particular relies on the 
interplay of rapid-evolving lncRNAs regu-
lating the activity of the X-chromosomes. 
The two faces of this RNA-orchestrated 
symphony are provided by non-ortholo-
gous lncRNAs playing similar function in 
different species (XIST and Rsx), as well 
as by the existence of species-specific long, 
non-coding transcripts such as XACT. 
The function of the latter in human devel-
opment, and more specifically in the pecu-
liar regulation of XCI in early embryos, 
remains to be understood.
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the silencing of gene clusters in cis.15 More 
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ple to the Polycomb complex PRC2 and 
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silencing.20 In mammalian cells, however, 
some examples of lncRNAs involved in 
gene activation have also been character-
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end of the HOXA locus, coordinates the 
activation of HOXA genes through its 
binding to a H3K4 methylase MLL.21 
Similarly, NeST recruits the MLL com-
plex to activate the interferon-γ gene, thus 
modifying susceptibility to pathogens.22 
It has also been shown that ncRNA-a, 
ncRNA-activating, can activate their 
neighboring genes using a cis-mediated 
mechanism implicating Mediator in order 
to enhance transcription.23,24 In all cases, 
however, the activating transcriptional 
effect remains local, with only close-by 
neighbor genes being affected. Although 
the potential role of XACT in the regula-
tion of the active X-chromosome activity 
remains to be determined, it seems that 
XACT could have a role in regulating a 
large fraction of the active X-chromosome 
as it co-localizes with a significant portion 
of the chromosome territory. It remains 
to be addressed whether XACT actively 
promotes the activity of the Xa or sim-
ply protects the Xa from inactivation. In 
this line of thought, instructive examples 
are provided by the dosage compensation 
systems in fruit flies, where the male-
specific-lethal complex increases the tran-
scription levels of the male X-chromosome 
to compensate for sex chromosome asym-
metry.25 The MSL complex includes two 
ncRNAs, roX1 and roX2, which are tran-
scribed from the male X-chromosome. roX 
RNAs appear to be important for correct 
targeting and spreading of the chroma-
tin modifying MSL complex to the male 
X-chromosome. They provide an example 
where lncRNAs participate in chromo-
some-wide activating activities. Moreover, 
considering this dosage compensation 
system, it appears that the determination 
of XACT interaction partners, as well as 
its fixation sites on the human Xa, will be 

XACT has the intriguing property of 
being a 251.8 kbp-long mostly unspliced 
RNA. Apart from XACT, few large and 
mostly unspliced lncRNAs have previously 
been identified in mammals, including 
Kcnq1ot1 (91.5 kbp), Airn (108 kbp), and 
Nespas (32 kbp).15 None of them broadly 
accumulates around a chromosome. These 
large unspliced lncRNAs have previously 
been overlooked in RNA-seq data sets; 
XACT was for example not listed in a ref-
erence catalog of more than 8,000 human 
lncRNAs recently characterized through 
an integrative analysis of various RNA-seq 
data sets.16 One reason for this is that work-
flows of genome-wide lncRNA identifica-
tion have limited their analysis to spliced 
RNA species. This is likely due to the fact 
that, in the absence of splicing event, it 
remains hazardous to delineate accurately 
unspliced lncRNAs with current RNA-
seq technologies. The low expression levels 
of lncRNAs moreover contribute to their 
uncertain identification; lncRNAs spe-
cies might be difficult to distinguish from 
pervasive transcription. In addition, it was 
recently shown that RNA-seq of total RNA 
depleted of rRNAs, which was used for the 
identification of XACT, is advantageous 
for detecting these large lncRNAs over 
the widely used polyA+ RNA fractions.17 
Indeed, large lncRNAs might be easily 
degraded and generate fragments lacking 
polyA tails. Numerous ENCODE RNA-
seq data sets have been generated using 
polyA RNA fractions,18 large unspliced 
lncRNAs are likely under-represented or 
absent from these reference data sets. One 
important question that remains regarding 
these peculiar RNA species is whether it 
is the transcripts themselves or their tran-
scription which is essential to their func-
tion. In the case of Airn, it has recently 
been shown that it is the transcription of 
the locus, rather than the transcript, which 
controls the imprinting of the locus.19 In 
the case of XACT, however, the fact that it 
is located in a gene desert region and the 
ability of the transcript to coat the chromo-
some argue for a role of the transcript itself 
rather than its transcription.

LncRNAs and Gene Activation

The three large lncRNAs mentioned above 
are involved in the control of imprinted 
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